CDRH3D18-220NC [Linear Systems]

White LED Driver with Integrated Schottky in 3mm 2mm DFN; 白光LED驱动器,集成肖特基采用3mm 2mm DFN封装
CDRH3D18-220NC
型号: CDRH3D18-220NC
厂家: Linear Systems    Linear Systems
描述:

White LED Driver with Integrated Schottky in 3mm 2mm DFN
白光LED驱动器,集成肖特基采用3mm 2mm DFN封装

驱动器
文件: 总16页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3591  
White LED Driver with  
Integrated Schottky in  
3mm × 2mm DFN  
FEATURES  
DESCRIPTION  
TheLT®3591isaxedfrequencystep-upDC/DCconverter  
specificallydesignedtodriveuptotenwhiteLEDsinseries  
from a Li-Ion cell. Series connection of the LEDs provides  
identical LED currents resulting in uniform brightness  
and eliminating the need for ballast resistors. The device  
featuresauniquehighsideLEDcurrentsensethatenables  
the part to function as a “one wire current source;” one  
sideoftheLEDstringcanbereturnedtogroundanywhere,  
allowing a simpler one wire LED connection. Traditional  
LED drivers use a grounded resistor to sense LED current,  
requiring a 2-wire connection to the LED string.  
Drives Up to Ten White LEDs from a 3V Supply  
High Side Sense Allows “One Wire Current Source”  
Internal Schottky Diode  
One Pin Dimming and Shutdown  
80:1 True Color PWMTM Dimming Range  
42V Open LED Protection  
1MHz Switching Frequency  
5ꢀ Reference Accuracy  
V Range: 2.5V to 12V  
IN  
Requires Only 2.2µF Output Capacitor  
Low Profile 8-Lead DFN Package  
(3mm × 2mm × 0.75mm)  
The high switching frequency allows the use of tiny induc-  
tors and capacitors. A single pin performs both shutdown  
and accurate LED dimming control. Few external compo-  
nents are needed: open-LED protection and the Schottky  
diode are all contained inside a low profile 3mm × 2mm  
DFN package.  
APPLICATIONS  
Cellular Phones  
PDAs, Handheld Computers  
Digital Cameras  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
True Color PWM is a trademark of Linear Technology Corporation. All other trademarks are  
the property of their respective owners.  
MP3 Players  
GPS Receivers  
TYPICAL APPLICATION  
Li-Ion Driver for Ten White LEDs  
Conversion Efficiency  
80  
SHUTDOWN AND  
DIMMING CONTROL  
V
= 3.6V  
IN  
10 LEDs  
75  
70  
65  
60  
55  
CTRL  
V
IN  
V
CAP  
LED  
IN  
3V TO 5V  
R
SENSE  
LT3591  
GND  
22µH  
1µF  
10Ω  
SW  
2.2µF  
0
5
10  
15  
20  
LED CURRENT (mA)  
3591 TA01b  
3591 TA01a  
3591f  
1
LT3591  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Input Voltage (V )................................................... 12V  
IN  
CTRL Voltage ........................................................... 12V  
SW Voltage .............................................................. 45V  
CAP Voltage ............................................................. 45V  
LED Voltage ............................................................. 45V  
Operating Junction Temperature Range  
(Note 2) ...............................................40°C to 85°C  
Maximum Junction Temperature ........................ 125°C  
Storage Temperature Range...................65°C to 150°C  
V
1
2
3
4
8
7
6
5
CTRL  
LED  
NC  
IN  
GND  
NC  
9
SW  
CAP  
DDB PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
= 125°C, θ = 76°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 9) SHOULD BE CONNECTED TO PCB GROUND  
ORDER PART NUMBER  
DDB PART MARKING  
LCPG  
LT3591EDDB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V = 3V, unless otherwise specified.  
CTRL  
A
IN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Minimum Operating Voltage  
LED Current Sense Voltage (V  
CAP Pin Bias Current  
LED Pin Bias Current  
Supply Current  
2.5  
– V  
)
LED  
V
= 24V, I = 300mA  
190  
200  
40  
210  
80  
mV  
µA  
CAP  
CAP  
CAP  
CAP  
CAP  
SW  
V
V
V
= 36V, V  
= 36V, V  
= 24V, V  
= 35.8V  
= 35.8V  
= 23V  
LED  
LED  
LED  
20  
40  
µA  
4
9
5
11  
mA  
µA  
CTRL = 0V  
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
0.75  
92  
1
1.2  
MHz  
94  
500  
800  
200  
0.1  
mA  
mV  
µA  
V
Switch V  
I
= 300mA  
= 24V  
CESAT  
SW  
Switch Leakage Current  
V
V
5
SW  
V
CTRL  
V
CTRL  
V
CTRL  
for Full LED Current  
to Shut Down IC  
to Turn On IC  
= 44V  
1.5  
CAP  
50  
mV  
mV  
nA  
V
100  
CTRL Pin Bias Current  
100  
42  
CAP Pin Overvoltage Protection  
Schottky Forward Drop  
40  
44  
4
I
= 200mA  
0.8  
V
SCHOTTKY  
Schottky Leakage Current  
V = 30V  
µA  
R
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3591E is guaranteed to meet performance specifications  
from 0°C to 85°C operating junction temperature range. Specifications  
over the –40°C to 85°C operating junction temperature range are assured  
by design, characterization and correlation with statistical process controls.  
3591f  
2
LT3591  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, unless otherwise specified.  
A
Switch Saturation Voltage  
CESAT  
(V  
)
Schottky Forward Voltage Drop  
Shutdown Current (V  
= 0V)  
CTRL  
15  
12  
9
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
25°C  
125°C  
125°C  
50°C  
50°C  
125°C  
25°C  
25°C  
6
50°C  
3
0
6
9
0
12  
3
0
200  
400  
600  
800 1000 1200  
400  
700 800  
0
100 200 300  
500 600  
V
(V)  
IN  
SCHOTTKY FORWARD DROP (mV)  
SWITCH CURRENT (mA)  
3591 G03  
3591 G02  
3591 G01  
Sense Voltage (V  
– V  
)
LED  
Open-Circuit Output  
Clamp Voltage  
Input Current in Output  
Open Circuit  
CAP  
vs V  
CTRL  
240  
200  
160  
120  
80  
8
7
6
5
4
3
2
1
0
45  
44  
43  
42  
41  
40  
50°C  
25°C  
125°C  
25°C  
125°C  
50°C  
25°C  
125°C  
50°C  
40  
0
0
3
6
9
12  
0
500 1000 1500 2000 2500 3000  
(mV)  
6
0
3
9
12  
V
(V)  
V
V
(V)  
IN  
CTRL  
IN  
3591 G06  
3591 G04  
3591 G05  
Switching Waveform  
Transient Response  
V
CAP  
V
SW  
5V/DIV  
20V/DIV  
V
V
CAP  
CTRL  
50mV/DIV  
5V/DIV  
I
L
I
L
200mA/DIV  
500mA/DIV  
3591 G07  
3591 G08  
V
= 3.6V  
500ms/DIV  
V
= 3.6V  
IN  
1ms/DIV  
IN  
FRONT PAGE  
APPLICATION CIRCUIT  
FRONT PAGE  
APPLICATION CIRCUIT  
3591f  
3
LT3591  
TYPICAL PERFORMANCE CHARACTERISTICS T = 25°C, unless otherwise specified.  
A
Quiescent Current  
CTRL  
Schottky Leakage Current  
vs Temperature  
(V  
= 3V)  
Current Limit vs Temperature  
15  
12  
9
6
5
1000  
800  
600  
400  
200  
0
V
V
V
= 10V  
= 16V  
= 20V  
R
R
R
25°C  
125°C  
50°C  
4
3
6
2
1
0
3
0
50  
100 125  
–50 –25  
0
25  
75  
0
3
6
9
12  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
IN  
3591 G11  
3591 G09  
3591 G10  
Open-Circuit Output Clamp  
Voltage vs Temperature  
Input Current in Output Open  
Circuit vs Temperature  
Switching Frequency  
vs Temperature  
45  
44  
43  
42  
41  
40  
1200  
1150  
1100  
1050  
1000  
950  
8
V
IN  
= 3V  
7
6
5
4
3
2
1
0
900  
850  
800  
750  
–50 –25  
0
25  
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
3591 G12  
3591 G14  
3591 G13  
Maximum Duty Cycle  
vs Temperature  
Sense Voltage (V  
– V  
)
Sense Voltage (V  
vs Temperature  
– V  
)
LED  
CAP  
LED  
CAP  
vs V  
CAP  
208  
204  
200  
196  
192  
188  
100  
98  
96  
94  
92  
90  
208  
204  
200  
196  
192  
188  
25°C  
125°C  
50°C  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
50  
75 100 125  
25  
35  
5
10  
15  
20  
30  
TEMPERATURE (°C)  
V
(V)  
CAP  
3591 G15  
3591 G17  
3591 G16  
3591f  
4
LT3591  
PIN FUNCTIONS  
V (Pin 1): Input Supply Pin. Must be locally bypassed.  
IN  
CTRL (Pin 8): Dimming and Shutdown Pin. Connect this  
pin below 50mV to disable the driver. As the pin voltage  
is ramped from 0V to 1.5V, the LED current ramps from  
GND (Pin 2): Ground Pin. Should be tied directly to local  
ground plane.  
0 to I  
( = 200mV/R  
). The CTRL pin must not be  
LED  
SENSE  
SW (Pin 4): Switch Pin. Minimize trace area at this pin to  
minimize EMI. Connect the inductor at this pin.  
left floating.  
Exposed Pad (Pin 9): Ground. The Exposed Pad must  
be soldered to PCB ground to achieve the rated thermal  
performance.  
CAP (Pin 5): Output of the Driver. This pin is connected  
to the cathode of internal Schottky. Connect the output  
capacitor to this pin and the sense resistor from this pin  
to the LED pin.  
LED (Pin 7): Connection Point for the Anode of the First  
LED and the Sense Resistor. The LED current can be  
programmed by :  
200mV  
RSENSE  
ILED  
=
BLOCK DIAGRAM  
1
4
SW  
V
IN  
PWM  
COMP  
CAP  
5
+
DRIVER  
A2  
Q1  
R
Q
S
OVERVOLTAGE  
PROTECTION  
+
R
A3  
Σ
RAMP  
GENERATOR  
V
REF  
+
OSCILLATOR  
SHDN  
1.25V  
+
+
A = 6.25  
LED  
A1  
7
R
C
C
C
START-UP  
CONTROL  
CTRL GND  
2
8
3591 F01  
Figure 1. Block Diagram  
3591f  
5
LT3591  
OPERATION  
The LT3591 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
Block Diagram in Figure 1.  
the LED current. The LT3591 enters into shutdown when  
CTRL is pulled lower than 50mV.  
Minimum Output Current  
The LT3591 can drive a 2-LED string at 2mA LED current  
without pulse skipping using the same external compo-  
nents shown in the application circuit on the front page of  
this data sheet. As current is further reduced, the device  
will begin skipping pulses. This will result in some low  
frequencyripple,althoughtheaverageLEDcurrentremains  
regulateddowntozero.ThephotoinFigure2detailscircuit  
operationdrivingtwowhiteLEDsat2mAload.Peakinduc-  
tor current is less than 40mA and the regulator operates  
in discontinuous mode, meaning the inductor current  
reacheszeroduringthedischargephase.Aftertheinductor  
current reaches zero, the SW pin exhibits ringing due to  
the LC tank circuit formed by the inductor in combination  
with the switch and the diode capacitance. This ringing is  
not harmful; far less spectral energy is contained in the  
ringing than in the switch transitions.  
At power-up, the capacitor at the CAP pin is charged up  
to V (input supply voltage) through the inductor and  
IN  
the internal Schottky diode. If CTRL is pulled higher than  
100mV, the bandgap reference, the start-up bias and the  
oscillatorareturnedon.Atthestartofeachoscillatorcycle,  
the power switch Q1 is turned on. A voltage proportional  
to the switch current is added to a stabilizing ramp and the  
resulting sum is fed into the positive terminal of the PWM  
comparator, A2. When this voltage exceeds the level at the  
negative input of A2, the PWM logic turns off the power  
switch. The level at the negative input of A2 is set by the  
error amplifier A1, and is simply an amplified version of  
the difference between the V  
and V voltage and the  
CAP  
LED  
bandgap reference. In this manner the error amplifier, A1,  
sets the correct peak current level in inductor L1 to keep  
the output in regulation. The CTRL pin is used to adjust  
I
L
20mA/DIV  
V
SW  
5V/DIV  
3591 F02  
V
= 4.2V  
500ns/DIV  
IN  
I
= 2mA  
LED  
2 LEDs  
Figure 2. Switching Waveforms  
3591f  
6
LT3591  
APPLICATIONS INFORMATION  
INDUCTOR SELECTION  
CAPACITOR SELECTION  
A 22µH inductor is recommended for most LT3591 ap-  
plications. Although small size and high efficiency are  
major concerns, the inductor should have low core losses  
at 1MHz and low DCR (copper wire resistance). Some  
small inductors in this category are listed in Table 1. The  
efficiency comparison of different inductors is shown in  
Figure 3.  
The small size of ceramic capacitors make them ideal for  
LT3591applications.UseonlyX5RandX7Rtypesbecause  
they retain their capacitance over wider temperature  
ranges than other types such as Y5V or Z5U. A 1µF input  
capacitor and a 50V, 2.2µF output capacitor are sufficient  
for most applications.  
A limited number of manufacturers produce small 50V  
capacitors. Table 2 shows a list of several recommended  
50V capacitors. Consult the manufacturer for detailed  
information on their entire selection of ceramic parts.  
Table 2. Recommended Output Capacitors  
VOLTAGE CASE SIZE  
Table 1. Recommended Inductors  
MAX  
CURRENT DIMENSION  
L
(µH)  
RATING  
(mA)  
L × W × H  
PART  
(mm)  
VENDOR  
VLF4012AT-  
220MR51  
22  
22  
22  
510  
490  
560  
420  
TDK  
4 ×3.8 ×1.2  
4.1 ×4.1 ×1.8  
4.1 ×4.1 ×2  
4.8 ×3.4 ×2.8  
www.tdk.com  
C
HEIGHT  
(mm)  
VLCF4018T-  
220MR49-2  
PART  
(µF) TEMP.  
VENDOR  
GRM21BR71H105KA12L  
1
50V  
X7R  
50V  
X7R  
50V  
X7R  
50V  
X7R  
50V  
X7R  
0805  
1.25 0.15  
1206  
Murata  
VLCF4020T-  
220MR56  
www.murata.com  
GRM31MR71H105KA88  
1
LQH43CN220K03 22  
Murata  
www.murata.com  
1.15 0.1  
1206  
NR4018T220M  
NR4012T220M  
22  
22  
22  
590  
510  
600  
Taiyo Yuden  
4.2 ×4.2 ×1.8  
4.2 ×4.2 ×1.2  
4 × 4 ×2  
GRM31CR71H225KA88 2.2  
GRM31CR71H475KA12L 4.7  
www.t-yuden.com  
1.6 0.2  
1206  
CDRH3D18-  
220NC  
Sumida  
www.sumida.com  
1.6 0.2  
1206  
B82470-A1223-M 22  
480  
Epcos  
www.epcos.com  
4.8 ×4.8 ×1.2  
UMK316BJ475KL-T  
4.7  
Taiyo Yuden  
www.t-yuden.com  
1.6 0.2  
85  
V
= 3.6V  
IN  
10 LEDs  
80  
75  
70  
65  
60  
55  
50  
TAIYO YUDEN NR4018T220M  
TDK VLCF4018T-220MR49-2  
TAIYO YUDEN NR4012T220M  
TDKVLCF4012AT-220MR51  
MURATA LQH43CN220K03  
TDK VLCF4020T-220MR56  
SUMIDA CDRH3D18-220NC  
EPCOS B82470-A1223-M  
0
5
10  
LED CURRENT (mA)  
15  
20  
3591 F03  
Figure 3. Efficiency Comparison of Different Inductors  
3591f  
7
LT3591  
APPLICATIONS INFORMATION  
SCHOTTKY DIODE  
For low DCR inductors, which is usually the case for this  
application, the peak inrush current can be simplified as  
follows:  
The LT3591 has a built-in Schottky diode. The internal  
schottky saves board space in space constrained appli-  
cations. In less space sensitive applications, an external  
schottky diode connected between the SW node and the  
CAP node increases efficiency one to two percent. It is  
important to use a properly rated schottky diode that can  
handle the peak switch current of the LT3591. In addition,  
theschottkydiodemusthaveabreakdownvoltageofatleast  
40V along with a low forward voltage in order to achieve  
higher efficiency. One recommended external schottky  
diode for the LT3591 is the Phillips PMEG4005AEA.  
V – 0.6  
L • ω  
α π  
ω 2  
IN  
IPK  
=
• exp –  
r
α =  
ω =  
2 L  
1
r2  
4 L2  
L C  
where L is the inductance, r is the DCR of the inductor  
and C is the output capacitance.  
OVERVOLTAGE PROTECTION  
Table 3 gives inrush peak currents for some component  
selections.  
Table 3. Inrush Peak Currents  
The LT3591 has an internal open-circuit protection circuit.  
In the cases of output open circuit, when the LEDs are  
disconnected from the circuit or the LEDs fail open circuit,  
V
(V)  
r (Ω)  
0.3  
L (µH)  
22  
C
(µF)  
I (A)  
IN  
OUT  
P
V
is clamped at 42V (typ). The LT3591 will then switch  
CAP  
4.2  
2.2  
1.06  
0.96  
0.83  
0.68  
ataverylowfrequencytominimizeinputcurrent.TheV  
CAP  
4.2  
4.2  
4.2  
0.71  
0.58  
1.6  
22  
2.2  
1
and input current during output open circuit are shown in  
the Typical Performance Characteristics. Figure 4 shows  
the transient response when the LEDs are disconnected.  
15  
15  
1
PROGRAMMING LED CURRENT  
The feedback resistor (R ) and the sense voltage  
I
L
500mA/DIV  
SENSE  
(V  
– V ) control the LED current.  
CAP  
LED  
V
CAP  
20V/DIV  
The CTRL pin controls the sense reference voltage as  
shown in the Typical Performance Characteristics. For  
CTRL higher than 1.5V, the sense reference is 200mV,  
which results in full LED current. In order to have accurate  
LED current, precision resistors are preferred (1ꢀ is rec-  
3591 F04  
V
= 3.6V  
500µs/DIV  
IN  
CIRCUIT OF  
FRONT PAGE LEDs DISCONNECTED  
APPLICATION AT THIS INSTANT  
ommended). The formula and table for R  
are shown below.  
selection  
SENSE  
Figure 4. Output Open-Circuit Waveform  
200mV  
ILED  
INRUSH CURRENT  
RSENSE  
=
The LT3591 has a built-in Schottky diode. When supply  
voltage is applied to the V pin, an inrush current flows  
IN  
through the inductor and the Schottky diode and charges  
up the CAP voltage. The Schottky diode inside the LT3591  
can sustain a maximum current of 1A.  
3591f  
8
LT3591  
APPLICATIONS INFORMATION  
Table 4. R  
Value Selection for 200mV Sense  
The corner frequency of R1, C1 should be much lower  
than the frequency of the PWM signal. R1 needs to be  
much smaller than the internal impedance of the CTRL  
pin which is 10MΩ (typ).  
SENSE  
I
(mA)  
R
(Ω)  
SENSE  
LED  
5
40  
10  
15  
20  
20  
13.3  
10  
Direct PWM Dimming  
Changing the forward current flowing in the LEDs not only  
changestheintensityoftheLEDs,italsochangesthecolor.  
The chromaticity of the LEDs changes with the change in  
forward current. Many applications cannot tolerate any  
shift in the color of the LEDs. Controlling the intensity of  
the LEDs with a direct PWM signal allows dimming of the  
LEDs without changing the color. In addition, direct PWM  
dimming offers a wider dimming range to the user.  
DIMMING CONTROL  
Therearethreedifferenttypesofdimmingcontrolcircuits.  
The LED current can be set by modulating the CTRL pin  
with a DC voltage, a filtered PWM signal or directly with  
a PWM signal.  
Using a DC Voltage  
Dimming the LEDs via a PWM signal essentially involves  
turning the LEDs on and off at the PWM frequency. The  
typical human eye has a limit of ~60 frames per second.  
By increasing the PWM frequency to ~80Hz or higher,  
the eye will interpret that the pulsed light source is con-  
tinuously on. Additionally, by modulating the duty cycle  
(amount of “on-time”), the intensity of the LEDs can be  
controlled. The color of the LEDs remains unchanged in  
this scheme since the LED current value is either zero or  
a constant value.  
Forsomeapplications,thepreferredmethodofbrightness  
control is a variable DC voltage to adjust the LED current.  
The CTRL pin voltage can be modulated to set the dim-  
ming of the LED string. As the voltage on the CTRL pin  
increases from 0V to 1.5V, the LED current increases from  
0 to I . As the CTRL pin voltage increases beyond 1.5V,  
LED  
it has no effect on the LED current.  
The LED current can be set by:  
200mV  
ILED  
, when VCTRL > 1.5V  
RSENSE  
VCTRL  
6.25 RSENSE  
Figure6showsaLi-IonpowereddriverfortenwhiteLEDs.  
Direct PWM dimming method requires an external NMOS  
tied between the cathode of the lowest LED in the string  
ILED  
, when VCTRL < 1.25V  
V
IN  
3V TO  
5V  
Feedback voltage variation versus control voltage is given  
in the Typical Performance Characteristics.  
L1  
22µH  
V
IN  
CAP  
LED  
SW  
R
C1  
1µF  
LT3591  
SENSE  
10Ω  
Using a Filtered PWM Signal  
GND  
C2  
2.2µF  
A filtered PWM signal can be used to control the  
brightness of the LED string. The PWM signal is filtered  
(Figure 5) by a RC network and fed to the CTRL pin.  
CTRL  
PWM  
FREQ  
5V  
0V  
Q1  
Si2308  
LT3591  
CTRL  
R1  
100k  
PWM  
10kHz TYP  
100k  
C1  
0.1µF  
3591 F05  
Figure 5. Dimming Control Using a Filtered PWM Signal  
Figure 6. Li-Ion to Ten White LEDs with Direct PWM Dimming  
3591f  
9
LT3591  
APPLICATIONS INFORMATION  
and ground as shown in Figure 6. A Si2308 MOSFET can  
beusedsinceitssourceisconnectedtoground. ThePWM  
signalisappliedtotheCTRLpinoftheLT3591andthegate  
of the MOSFET. The PWM signal should traverse between  
0V to 5V, to ensure proper turn on and off of the driver  
and the NMOS transistor Q1. When the PWM signal goes  
high, the LEDs are connected to ground and a current of  
Thecalculationsshowthatfora100Hzsignalthedimming  
rangeis83to1. Inaddition, theminimumPWMdutycycle  
of 1.2ꢀ ensures that the LED current has enough time  
to settle to its final value. Figure 8 shows the dimming  
range achievable for different frequencies with a settling  
time of 120µs.  
10000  
I
= 200mV/R  
flows through the LEDs. When the  
LED  
SENSE  
PWM signal goes low, the LEDs are disconnected and  
turn off. The MOSFET ensures that the LEDs quickly turn  
off without discharging the output capacitor which in turn  
allows the LEDs to turn on faster. Figure 7 shows the PWM  
dimming waveforms for the circuit in Figure 6.  
1000  
PULSING MAY BE VISIBLE  
100  
10  
PWM  
5V/DIV  
I
L
1
500mA/DIV  
10  
100  
1000  
10000  
PWM DIMMING FREQUENCY (Hz)  
3591 F08  
I
LED  
20mA/DIV  
Figure 8. Dimming Range vs Frequency  
3591 F07  
V
= 3.6V  
2ms/DIV  
IN  
10 LEDs  
Inadditiontoextendingthedimmingrange,PWMdimming  
improves the efficiency of the converter for LED currents  
below 20mA. Figure 9 shows the efficiency for traditional  
analog dimming of the front page application and PWM  
dimming of the application in Figure 6.  
Figure 7. Direct PWM Dimming Waveforms  
The time it takes for the LED current to reach its pro-  
grammed value sets the achievable dimming range for a  
given PWM frequency. For example, the settling time of  
the LED current in Figure 7 is approximately 120µs for a  
3.6V input voltage. The achievable dimming range for this  
application and 100Hz PWM frequency can be determined  
using the following method.  
80  
PWM DIMMING  
75  
70  
Example:  
ƒ =100Hz, tSETTLE =120µs  
65  
ANALOG DIMMING  
1
1
60  
tPERIOD  
=
=
= 0.01s  
V
= 3.6V  
ƒ 100  
IN  
10 LEDs  
55  
10  
0
5
15  
20  
tPERIOD  
tSETTLE 120µs  
0.01s  
Dim Range=  
=
= 83:1  
LED CURRENT (mA)  
3591 F09  
Figure 9. PWM vs Analog Dimming Efficiency  
tSETTLE  
tPERIOD  
120µs  
0.01s  
Min Duty Cycle =  
100=  
100=1.2%  
Duty Cycle Range =100%1.2% at 100Hz  
3591f  
10  
LT3591  
APPLICATIONS INFORMATION  
LOW INPUT VOLTAGE APPLICATIONS  
BOARD LAYOUT CONSIDERATIONS  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To prevent electromagnetic interference (EMI) problems,  
properlayoutofhighfrequencyswitchingpathsisessential.  
Minimize the length and area of all traces connected to  
the switching node pin (SW). Keep the sense voltage pins  
The LT3591 can be used in low input voltage applications.  
The input supply voltage to the LT3591 must be 2.5V or  
higher.However,theinductorcanberunoffalowerbattery  
voltage. This technique allows the LEDs to be powered off  
two alkaline cells. Most portable devices have a 3.3V logic  
supply voltage which can be used to power the LT3591.  
TheLEDscanbedrivenstraightfromthebattery, resulting  
in higher efficiency.  
(CAP and LED) away from the switching node. Place C  
OUT  
next to the CAP pin. Always use a ground plane under the  
switching regulator to minimize interplane coupling. Re-  
commended component placement is shown in Figure 11.  
Figure 10 shows six LEDs powered by two AA cells. The  
batteryisconnectedtotheinductorandthechipispowered  
off a 3.3V logic supply voltage.  
C
IN  
SHUTDOWN AND  
V
IN  
DIMMING CONTROL  
CTRL  
CAP  
8
7
6
5
1
2
3
4
3.3V  
CTRL CAP  
V
IN  
C1  
1µF  
LED  
R
GND  
9
SENSE  
10Ω  
LT3591  
LED  
L1  
L1  
15µH  
SW  
C2  
4.7µF  
2 AA CELLS  
2V TO 3.2V  
SW  
R
SENSE  
GND  
C
OUT  
C1  
1µF  
3591 F11  
3591 F10  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H475KA12L  
L1: TAIYO YUDEN NR4018T150M  
Figure 11. Recommended Component Placement  
Figure 10. 2 AA Cells to Six White LEDs  
3591f  
11  
LT3591  
TYPICAL APPLICATIONS  
Li-Ion Driver for Ten White LEDs  
Efficiency  
D1  
L1  
85  
80  
75  
70  
65  
60  
55  
22µH  
*OPTIONAL  
V
= 3.6V  
IN  
10 LEDs  
SW  
LT3591  
GND  
NO SCHOTTKY  
V
IN  
V
CAP  
IN  
3V TO 5V  
R
SENSE  
10Ω  
SHUTDOWN  
AND DIMMING  
CONTROL  
CTRL  
LED  
EXTERNAL SCHOTTKY  
C2  
2.2µF  
C1  
1µF  
0
5
10  
15  
20  
LED CURRENT (mA)  
3491 TA02b  
C1:TAIYO YUDEN EMK107BJ105MA  
L1: TAIYO YUDEN NR4018T220M  
C2: MURATA GRM31CR71H225KA88 D1: PHILLIPS PMEG4005AEA  
Li-Ion Driver for Four White LEDs at 50mA  
Efficiency  
SHUTDOWN AND  
80  
75  
70  
65  
60  
DIMMING CONTROL  
V
= 3.6V  
IN  
4 LEDs  
CTRL  
V
IN  
V
CAP  
LED  
IN  
3V TO 5V  
R
L1  
10µH  
SENSE  
LT3591  
GND  
3.92Ω  
SW  
C2  
4.7µF  
C1  
1µF  
20  
LED CURRENT (mA)  
0
10  
30  
40  
50  
C1:TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H475KA12L  
L1: MURATA LQH32CN100K53  
3591 TA03b  
3591f  
12  
LT3591  
TYPICAL APPLICATIONS  
24V to Four White LEDs at 100mA  
Efficiency  
95  
90  
85  
80  
75  
70  
C2  
4.7µF  
PV  
IN  
24V  
R
SENSE  
C3  
2Ω  
1µF  
CAP  
LED  
V
3V  
IN  
L1  
22µH  
V
IN  
C1  
1µF  
LT3591  
GND  
SHUTDOWN  
AND  
DIMMING  
CONTROL  
CTRL  
SW  
3591 TA05a  
0
20  
40  
60  
80  
100  
LED CURRENT (mA)  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H475KA12L  
C3: MURATA GRM21BR71H105KA12L  
L1: TAIYO YUDEN NR4018T220M  
3591 TA05b  
24V to Five White LEDs at 100mA  
Efficiency  
C2  
4.7µF  
95  
PV  
IN  
24V  
R
SENSE  
C3  
1µF  
90  
85  
80  
75  
70  
2Ω  
CAP  
LED  
V
IN  
L1  
22µH  
V
IN  
3V  
C1  
LT3591  
GND  
1µF  
SHUTDOWN  
AND  
CTRL  
SW  
DIMMING  
CONTROL  
3591 TA06a  
0
20  
40  
60  
80  
100  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H475KA12L  
C3: MURATA GRM21BR71H105KA12L  
L1: TAIYO YUDEN NR4018T220M  
LED CURRENT (mA)  
3591 TA06b  
3591f  
13  
LT3591  
TYPICAL APPLICATIONS  
Li-Ion Driver for Seven White LEDs  
Conversion Efficiency  
SHUTDOWN AND  
85  
80  
75  
70  
65  
60  
55  
50  
DIMMING CONTROL  
V
= 3.6V  
IN  
7 LEDs  
CTRL  
V
IN  
V
CAP  
LED  
IN  
3V TO 5V  
L1  
22µH  
R
SENSE  
10Ω  
LT3591  
GND  
SW  
C2  
2.2µF  
C1  
1µF  
0
5
10  
20  
15  
LED CURRENT (mA)  
3591 TA07b  
3591 TA07a  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H225KA88  
L1: TAIYO YUDEN NR4018T220M  
Li-Ion Driver for Eight White LEDs  
Conversion Efficiency  
SHUTDOWN AND  
85  
80  
75  
70  
65  
60  
55  
V
= 3.6V  
IN  
DIMMING CONTROL  
8 LEDs  
CTRL  
V
IN  
V
CAP  
LED  
IN  
3V TO 5V  
L1  
22µH  
R
SENSE  
LT3591  
GND  
10Ω  
SW  
C2  
2.2µF  
C1  
1µF  
0
5
10  
20  
15  
LED CURRENT (mA)  
3591 TA08b  
3591 TA08a  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H225KA88  
L1: TAIYO YUDEN NR4018T220M  
3591f  
14  
LT3591  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 0.05  
(2 SIDES)  
0.70 0.05  
2.55 0.05  
1.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
2.20 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 0.10  
3.00 0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
8
2.00 0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 × 45°  
0.56 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.15 0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3591f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3591  
TYPICAL APPLICATION  
Li-Ion Driver for Nine White LEDs  
Conversion Efficiency  
85  
80  
75  
70  
65  
60  
55  
SHUTDOWN AND  
V
= 3.6V  
IN  
DIMMING CONTROL  
9 LEDs  
CTRL  
V
IN  
V
CAP  
LED  
IN  
3V TO 5V  
L1  
R
SENSE  
C2  
2.2µF  
LT3591  
GND  
22µH  
10Ω  
SW  
C1  
1µF  
20  
0
5
10  
15  
LED CURRENT (mA)  
3591 TA09b  
3591 TA09a  
C1: TAIYO YUDEN EMK107BJ105MA  
C2: MURATA GRM31CR71H225KA88  
L1: TAIYO YUDEN NR4018T220M  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1618  
Constant-Current, Constant Voltage 1.24MHz, High Efficiency  
Boost Regulator  
Up to 16 White LEDs, V : 1.6V to 18V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.8mA, I < 1µA, MS Package  
Q
SD  
LT1937  
Constant-Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
Up to 4 White LEDs, V : 2.5V to 10V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.9mA, I < 1µA, ThinSOTTM/SC70 Packages  
Q
SD  
LTC®3200  
LTC3200-5  
Low Noise, 2MHz Regulated Charge Pump White LED Driver  
Up to 6 White LEDs, V : 2.7V to 4.5V, I = 8mA, I < 1µA,  
IN Q SD  
MS Package  
Low Noise, 2MHz Regulated Charge Pump White LED Driver  
Up to 6 White LEDs, V : 2.7V to 4.5V, I = 8mA, I < 1µA,  
IN  
Q
SD  
ThinSOT Package  
LTC3201  
Low Noise, 1.7MHz Regulated Charge Pump White LED Driver Up to 6 White LEDs, V : 2.7V to 4.5V, I = 6.5mA, I < 1µA,  
IN  
Q
SD  
MS Package  
LTC3202  
Low Noise, 1.5MHz Regulated Charge Pump White LED Driver Up to 8 White LEDs, V : 2.7V to 4.5V, I = 5mA, I < 1µA,  
IN  
Q
SD  
MS Package  
LTC3205  
High Efficiency, Multidisplay LED Controller  
Up to 4 (Main), 2 (Sub) and RGB, V : 2.8V to 4.5V,  
IN  
I = 50µA, I < 1µA, 24-Lead QFN Package  
Q
SD  
LT3465/LT3465A  
LT3466/LT3466-1  
LT3486  
Constant-Current, 1.2MHz/2.7MHz, High Efficiency White LED Up to 6 White LEDs, V : 2.7V to 16V, V  
= 34V,  
IN  
OUT(MAX)  
Boost Regulator with Integrated Schottky Diode  
I = 1.9mA, I < 1µA, ThinSOT Package  
Q SD  
Dual Full Function, 2MHz Diodes White LED Step-Up Converter Up to 20 White LEDs, V : 2.7V to 24V, V  
= 39V,  
IN  
OUT(MAX)  
with Built-In Schottkys  
DFN, TSSOP-16 Packages  
Dual 1.3A White LED Converter with 1000:1 True Color PWM  
Dimming  
Drives Up to 16 100mA White LEDs. V : 2.5V to 24V,  
OUT(MAX)  
IN  
V
= 36V, DFN, TSSOP Packages  
LT3491  
2.3MHz White LED Driver with Integrated Schottky Diode  
Drives Up to 6 LEDs. V : 2.5V to 12V, V  
= 27V, SC70 and  
= 32V,  
OUT(MAX)  
IN  
OUT(MAX)  
DFN Packages  
LT3497  
Dual Full Function 2.3MHz LED Driver with 250:1 True Color  
PWM Dimming with Integrated Schottky Diodes  
Up to 12 White LEDs, V : 2.5V to 10V, V  
IN  
3mm × 2mm DFN Package  
ThinSOT is a trademark of Linear Technology Corporation  
3591f  
LT 0207 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

CDRH3D18ENP-100NB

General Purpose Inductor, 10uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-100NC

General Purpose Inductor, 10uH, 30%, 1 Element, Ferrite-Core, SMD, 1616, CHIP, 1616, HALOGEN FREE AND ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-120NC

General Purpose Inductor, 12uH, 30%, 1 Element, Ferrite-Core, SMD, 1616, CHIP, 1616, HALOGEN FREE AND ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-150NB

General Purpose Inductor, 15uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-150NC

General Purpose Inductor, 15uH, 30%, 1 Element, Ferrite-Core, SMD, 1616, CHIP, 1616, HALOGEN FREE AND ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-1R0NB

General Purpose Inductor, 1uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-1R0NC

General Purpose Inductor, 1uH, 30%, 1 Element, Ferrite-Core, SMD, 1616, CHIP, 1616, HALOGEN FREE AND ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-1R5NB

General Purpose Inductor, 1.5uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-220NB

General Purpose Inductor, 22uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-2R2NB

General Purpose Inductor, 2.2uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-330NB

General Purpose Inductor, 33uH, 30%, 1 Element, Ferrite-Core, SMD, 1515, ROHS COMPLIANT
SUMIDA

CDRH3D18ENP-330NC

General Purpose Inductor, 33uH, 30%, 1 Element, Ferrite-Core, SMD, 1616, CHIP, 1616, HALOGEN FREE AND ROHS COMPLIANT
SUMIDA